Effects of Peripheral Tuning on the Auditory Nerve’s Representation of Speech Envelope and Temporal Fine Structure Cues

نویسندگان

  • Rasha A. Ibrahim
  • Ian C. Bruce
چکیده

Abstract A number of studies have explored how speech envelope and temporal fine structure (TFS) cues contribute to speech perception. Some recent investigations have attempted to process speech signals to remove envelope cues and leave only TFS cues, but the results are confounded by the fact that envelope cues may be partially reconstructed when TFS signals pass through the narrowband filters of the cochlea. To minimize this reconstruction, investigators have utilized large numbers of narrowband filters in their speech processing algorithms and introduced competing envelope cues. However, it has been argued that human peripheral tuning may be two or more times sharper than previously estimated, such that envelope restoration may be stronger than originally thought. In this study, we utilize a computational model of the auditory periphery to investigate how cochlear tuning affects the restoration of envelope cues in auditory nerve responses to “TFS speech.” Both the envelope-normalization algorithm of Lorenzi et al. (Proc Natl Acad Sci USA 103:18866−18869, 2006) and the speech-noise chimaeras of Smith et al. (Nature 416:87–90, 2002) were evaluated. The results for the two processing algorithms indicate that the competing noise envelope of the chimaeras better reduces speech envelope restoration but does not totally eliminate it. Moreover, envelope restoration is greater if the cochlear tuning is adjusted to match Shera and colleagues’ (Proc Natl Acad Sci USA 99:3318−3323, 2002) estimates of human tuning.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Optimal combination of neural temporal envelope and fine structure cues to explain speech identification in background noise.

The dichotomy between acoustic temporal envelope (ENV) and fine structure (TFS) cues has stimulated numerous studies over the past decade to understand the relative role of acoustic ENV and TFS in human speech perception. Such acoustic temporal speech cues produce distinct neural discharge patterns at the level of the auditory nerve, yet little is known about the central neural mechanisms under...

متن کامل

Robust cortical entrainment to the speech envelope relies on the spectro-temporal fine structure

Speech recognition is robust to background noise. One underlying neural mechanism is that the auditory system segregates speech from the listening background and encodes it reliably. Such robust internal representation has been demonstrated in auditory cortex by neural activity entrained to the temporal envelope of speech. A paradox, however, then arises, as the spectro-temporal fine structure ...

متن کامل

The Role of Temporal Fine Structure Cues in Speech Perception

In this thesis, the importance of temporal fine structure (TFS) in speech perception is investigated. It is well accepted that TFS is important for sound localization and pitch perception, while envelope (ENV) is primarily responsible for speech perception. Recently, a significant contribution of TFS in speech perception has been suggested. This was linked to the improved ability of normal-hear...

متن کامل

On the dichotomy in auditory perception between temporal envelope and fine structure cues.

It is important to know what cues the sensory system extracts from natural stimuli and how the brain uses them to form perception. To explore this issue, Smith, Delgutte, and Oxenham @Nature ~London! 416, 87–90 ~2002!# mixed one sound’s temporal envelope with another sound’s fine temporal structure to produce auditory chimaeras and found that ‘‘the perceptual importance of the envelope increase...

متن کامل

The Relative Contributions of Temporal Envelope and Fine Structure to Mandarin Lexical Tone Perception in Auditory Neuropathy Spectrum Disorder.

Previous studies have demonstrated that temporal envelope (E) is sufficient for speech perception, while fine structure (FS) is important for pitch perception for normal-hearing (NH) listeners. Listeners with sensorineural hearing loss (SNHL) have an impaired ability to use FS in lexical tone perception due to the reduced frequency resolution. Listeners with auditory neuropathy spectrum disorde...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010